Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,736 users

Max/Min and Critical Points

0 votes

 

 

QUESTION TWO

 

asked Aug 27, 2014 in CALCULUS by zoe Apprentice

2 Answers

0 votes
 
Best answer

(2).(a).

The function is f(x) = 3x4 - 4x3 + 2 and interval is [-1, 2].

f,(x) = 12x3 - 12x2.

To find the critical or key numbers, to make the first derivative equal to zero or f ' (x) = 0.

12x3 - 12x2 = 0

12x2(x - 1) = 0

The critical numbers are x = 0 and x = 1. So, the number of critical points is 2.

 

x - value

f(x) = 3x4 – 4x3 + 2

Conclusion

Left Endpoint

 -1

 f(-1) = 3(-1)4 – 4(-1)3 + 2 = 3 + 4 + 2 = 9

 

Critical number

 0

f(0) = 3(0)4 – 4(0)3 + 2 = 0 - 0 + 2 = 2

 

Critical number

 1

f(1) = 3(1)4 – 4(1)3 + 2 = 3 - 4 + 2 = 1

Minimum

Right Endpoint

 2

f(2) = 3(2)4 – 4(2)3 + 2 = 48 - 32 + 2 = 18

Maximum

The critical numbers are x = 0 and x = 1. The minimum value is f(1) = 1 and the maximum value is f(2) = 18.

(2).(b).

The function is f(x) = (x2 - 1)3 and interval is [-2, 2].

f ' (x) = 6x(x2 - 1)2.

To find the critical or key numbers, to make the first derivative equal to zero or f ' (x) = 0.

6x(x2 - 1)2 = 0

The critical numbers are x = 0 and x = ± 1. So, the number of critical points is 3.

 

x - value

f(x) = (x2 – 1)3

Conclusion

Left Endpoint

- 2

 f(- 2) = [(- 2)2 – 1]3 = 33 = 27

Maximum

Critical number

-1

 f(- 1) = [(- 1)2 – 1]3 = 03 = 0

 

Critical number

0

 f(0) = [(0)2 – 1]3 = (-1)3 = - 1

Minimum

Critical number 1

 f(1) = [(1)2 – 1]3 = 03 = 0

 

Right Endpoint

2

 f(2) = [(2)2 – 1]3 = 33 = 27

Maximum

The critical numbers are x = - 1, x = 0 and x = 1. The minimum value are is f(0) = -1 and the maximum values are f(-2) = 27 and f(2) = 27.

 

 

answered Aug 27, 2014 by casacop Expert
selected Aug 28, 2014 by zoe
0 votes

(1).

The function is Y = kN/(36 + N2), where Y = yield and N = nitrogen level.

Derivative respect to 'N' to each side.

dY/dN = [(36 + N2)k - 2kN2] / (36 + N2)2

dY/dN = k(36 - N2) / (36 + N2)2

Derivative respect to 'N' to each side.

d2Y/dN2 = [-2Nk(36 + N2)2 - 4Nk(36 - N2)(36 + N2)] / (36 + N2)4

              = [-2Nk(36 + N2)2{36 + N2 + 72 - 2N2}] / (36 + N2)4

              = -2Nk(108 - N2) / (36 + N2)2

To find the critical or key numbers, to make the first derivative equal to zero or dY/dN = 0.

k(36 - N2) / (36 + N2)2 = 0

(62 - N2) = 0

The critical numbers are N = 6 and N = -6. So, the number of critical points is 2.

At N = 6

d2Y/dN2 = -2(6)k(108 - 62) / (36 + 62)2

             = - 864k/5184 < 0 (negative)                [k = positive]

             = Local maximum.

The best yield at N = 6.

answered Aug 27, 2014 by casacop Expert

Related questions

...