Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

805,806 users

Find the lengths of the sides of the triangle PQR.

0 votes

Find the lengths of the sides of the triangle PQR.

P(4, −2, −3),    Q(8, 0, 1),    R(10, −4, −3) what kind of triangle is it?

 

asked Sep 21, 2018 in ALGEBRA 2 by anonymous

1 Answer

0 votes
The points are P = (4, -2, -3), Q = (8, 0, 1) and R  = (10, -4, -3) 
The point 
b)
Let P (x1, y1, z1) = (4, -2, -3) and Q (x2, y2, z2) = (8, 0, 1)
Lenth of the Line Segment =  √ [(x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2] ----------------------> (1)
Substitute  P (x1, y1, z1) = (4, -2, -3) and Q (x2, y2, z2) = (8, 0, 1) in equation (1)
PQ  =  √ [ (8 - 4)^2 + (0 + 2)^2 + (1 + 3)^2 ]
       =   √ [ (4)^2 + (2)^2 + (4)^2 ]
       =   √ [ 16 + 4 + 16 ]
       =   √ [ 36 ]
       =   6
Let Q (x1, y1, z1) = (8, 0, 1) and R (x2, y2, z2) = (10, -4, -3) 
Substitute  Q (x1, y1, z1) = (8, 0, 1) and R (x2, y2, z2) = (10, -4, -3)  in equation (1)
QR  =  √ [ (10 - 8)^2 + (-4 - 0)^2 + (-3 - 1)^2 ]
       =  √ [ (2)^2 + (-4)^2 + (4)^2 ]
       =   √ [ 4 + 16 + 16 ]
       =   √ [ 36 ]
       =   6
Let R (x1, y1, z1) = (10, -4, -3) and P (x2, y2, z2) =  (4, -2, -3)
Substitute  R (x1, y1, z1) = (10, -4, -3) and P (x2, y2, z2) =  (4, -2, -3)  in equation (1)
RP  =  √ [ (4 - 10)^2 + (-2 + 4)^2 + (-3 + 3)^2 ]
       =  √ [ (- 6)^2 + (2)^2 + (0)^2 ]
       =  √ [ 36 + 4 + 0 ]
       =  √40
RP^2  <  PR^2 + QR^2
(√40 )^2  <  6^2 + 6^2
40  <  36 + 36
40  <  72
Hence, it is a acute angled triangle
Answer:
Acute angled triangle.
answered Oct 8, 2018 by homeworkhelp Mentor

Related questions

asked May 20, 2014 in TRIGONOMETRY by anonymous
...