Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,738 users

I need help with quadratic functions, pre calculus?

0 votes

I need help with quadratic functions, pre calculus? 

asked Nov 3, 2014 in PRECALCULUS by anonymous

3 Answers

0 votes

(a)

The number of feeder packets sold by the society is 24 per week .

Price of each feeder packet is $10 .

The material cost for each feeder is $6 .

For every $1 increase in price of the feeder packet the number of sales decreases by 3 .

If x times the price $10 increases by $1 then x times of 3 sales will decreases .

Mathematically the  profit function

P(x) = [ Price of each feeder * number of sales per week ] - [ material cost for each feeder * number of sales per week ] .

                     P(x) = [ (10 + 1*x )(24 - 3*x) ] - [6(24 - 3*x)]

                     P(x) = [ (10 + x )( 24 - 3x) ] - [144 -18x]

                     P(x) = [ 240 + 24x - 30x -3x²  ] - [144 -18x]

                     P(x) = 240 -6x -3x² -144 +18x 

                     P(x) = 96 +12x -3x² 

So the profit function of for feeder packets is P(x) = 96 +12x -3x²  .

answered Nov 3, 2014 by friend Mentor
edited Nov 3, 2014 by bradely
0 votes

(b)

The number of feeder packets sold by the society is 24 per week .

Price of each feeder packet is $10 .

The material cost for each feeder is $6 .

For every $1 increase in price of the feeder packet the number of sales decreases by 3 .

If x times the price $10 increases by $1 then x times of 3 sales will decreases .

Mathematically the  profit function

P(x) = [ Price of each feeder packet * number of sales per week ] - [ material cost for each feeder * number of sales per week ] .

                     P(x) = [ (10 + 1*x )(24 - 3*x) ] - [6(24 - 3*x)]

                     P(x) = [ (10 + x )( 24 - 3x) ] - [144 -18x]

                     P(x) = [ 240 + 24x - 30x -3x²  ] - [144 -18x]

                     P(x) = 240 -6x -3x² -144 +18x 

                     P(x) = 96 +12x -3x²  

The profit function is P(x) = 96 +12x -3x² .

To find the maximum profit , make the first derivative of profit function to zero .

P' =  12 - 6x = 0

12 - 6x = 0

6x = 12

x = 2

So the price of each feeder packet = 10 + 1*x

                                       = 10 + 1(2)

                                       = 12

The price of each feeder packet is $12 .

answered Nov 3, 2014 by friend Mentor
0 votes

(c)

The number of feeder packets sold by the society is 24 per week .

Price of each feeder packet is $10 .

The material cost for each feeder is $6 .

For every $1 increase in price of the feeder packet the number of sales decreases by 3 .

If x times the price $10 increases by $1 then x times of 3 sales will decreases .

Mathematically the  profit function

P(x) = [ Price of each feeder packet * number of sales per week ] - [ material cost for each feeder * number of sales per week ] .

                     P(x) = [ (10 + 1*x )(24 - 3*x) ] - [6(24 - 3*x)]

                     P(x) = [ (10 + x )( 24 - 3x) ] - [144 -18x]

                     P(x) = [ 240 + 24x - 30x -3x²  ] - [144 -18x]

                     P(x) = 240 -6x -3x² -144 +18x 

                     P(x) = 96 +12x -3x²  

The profit function is P(x) = 96 +12x -3x² .

To find the maximum profit , make the first derivative of profit function to zero .

P' =  12 - 6x = 0

12 - 6x = 0

6x = 12

x = 2

Now put x = 2 in  profit function , to get maximum profit .

P(2) = 96 +12(2) -3(2)²

       = 96 +24 -3(4)

        = 120 - 12

        = 108

So the maximum profit is $108 .

answered Nov 3, 2014 by friend Mentor

Related questions

asked Nov 11, 2014 in PRECALCULUS by anonymous
asked May 1, 2014 in PRECALCULUS by anonymous
asked Nov 20, 2014 in PRECALCULUS by anonymous
asked Nov 15, 2014 in PRECALCULUS by anonymous
...