Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

805,809 users

Describe the solution set of the linear system

0 votes

Describe the solution set of the linear system

4x_1 + 9x_2 - x_3 = -1.

-2x_1 - 6x_2 - 4x_3 = 2.

x_1 + x_2 - 4x_3 = 1, 

algebraically 

asked Oct 13, 2017 in ALGEBRA 1 by anonymous

1 Answer

0 votes
Let x_1 = x, x_2 = y and x_3 = z
 
The system of equations are
 
4x + 9y - z  =  -1 -----------------> (1)
 
-2x - 6y - 4z  =  2 -----------------> (2)    
 
x  +  y - 4z  =  1 -----------------> (3)
 
Multiply Eq(2) with 2 and to Eq (1)
 
Eq(2) X 2 =======>  -4x - 12y - 8z  =  4
 
Eq(1) ==========>    4x + 9y -  z  =  -1
 
                              -----------------------------------
 
                                             -3y  - 9z  =  3
 
                                             -3(y  + 3z)  =  3
 
                                                (y  + 3z)  =  3/(-3)
 
                                                (y  + 3z)  =  -1 --------------------- > (4)
 
Multiply Eq(3) with 2 and to Eq (2)
 
Eq(3) X 2 =======>  2x + 2y - 8z  =  2
 
Eq(2) ==========>  -2x - 6y - 4z  =  2
                             -------------------------------
                                         - 4y - 12z  =  4
 
                                        - 4(y + 3z)  =  4
 
                                            (y + 3z)  =  4/(-4)
 
                                            (y + 3z)  =  -1 ------------------------> (5)
 
Equations (4) and (5) are coinciding each other
 
Hence it has many solutions which satisfies below equations for x and y.
 
y  =  -1 - 3z
 
Substitute y = -3z - 1 in Eq (3)
 
x  +  (-1 - 3z) - 4z  =  1
 
x  - 1 - 3z - 4z  =  1
 
x  - 1 - 7z  =  1
 
x  =  1 + 1 + 7z
 
x  =  2 + 7z

Answer :

Solutions are x  =  2 + 7z and y = -1 - 3z.

answered Oct 12, 2018 by homeworkhelp Mentor

Related questions

...