Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,740 users

How to solve this equation

0 votes

 (sin x + sin 2x)*(2 cos x - 1 ) = sin 3x?

asked Jun 17, 2014 in TRIGONOMETRY by anonymous

1 Answer

0 votes

The trigometric equation is (sin x + sin 2x) * (2 cos x - 1) = sin 3x.

(sin x + 2 sin x cos x) * (2 cos x - 1) = sin 3x         [ ∵ sin 2x = 2 sin x cos x ]

sin x(2 cos x + 1)(2 cos x - 1) = sin 3x

sin x[ (2 cos x)2- 1] = sin 3x                               [ ∵ (a + b)(a - b) = a2- b2 ]

sin x[ 4 cos2 x - 1] = sin 3x

sin x[ 4 (1 - sin2 x) - 1] = sin 3x                         [ ∵ cos2 x + sin2 x = 1 ]

sin x[ 4 - 4sin2 x - 1] = sin 3x

sin x[ 3 - 4sin2 x] = sin 3x

3sin x - 4sin3 x = sin 3x                                   [ ∵ 3sin x - 4sin3 x = sin 3x ]

sin 3x = sin 3x

sin 3x - sin 3x = 0

0 = 0.

The above statement is true.

So, all values of x are solutions.

answered Jun 17, 2014 by lilly Expert

Related questions

asked May 13, 2014 in TRIGONOMETRY by anonymous
asked Nov 12, 2014 in ALGEBRA 2 by anonymous
...