Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,711 users

Use completing the square to solve each of the following quadratic equations.

0 votes

a)x2−6x+1=0;

b)2x2+6x+7=0;

c)2x2+6x+7=0

d)3x2−2x−1=0

asked Oct 16, 2018 in ALGEBRA 2 by anonymous

1 Answer

0 votes

a)

x2−6x + 1  =  0

The equation x2−6x + 1  =  0

Separate variables and constants aside by subtracting 1 to each side.

x^2 - 6x  =  -1

To change the expression into a perfect square trinomial add (half the x coefficient)² to each side of the expression.

x^2 - 6x + 3^2  =  -1 + 3^2

(x - 3)^2  =  -1 + 9

(x - 3)^2  =  8

Take square root on both sides.

(x - 3)   =   ± √8

(x - 3)   =   ± 2√2

x   =  3  ± 2√2

Solutions are x = 3  + 2√2 and 3  - 2√2

b)

The equation 2x+ 6x + 7  =  0

Separate variables and constants aside by subtracting 7 each side

2x+ 6x  =  - 7

Here x^2 coefficient is 2 , for perfect square make x^2 coefficient 1 by dividing each side by 2

x+ 3x  =  - 7/2

To change the expression into a perfect square trinomial add (half the x coefficient)² to each side of the expression.

x+ 3x + (3/2)^2  =  - 7/2 + (3/2)^2

(x - 3/2)^2  =  - 7/2 + 9/4

(x - 3/2)^2  =  (-14 + 9)/4

(x - 3/2)^2  =  -5/4

Take square root on both sides.

(x - 3/2)   =   ± √(-5/4)

(x - 3/2)   =   ± i(√5)/2

(x - 3/2)   =   ± i(√5)/2

x   =   3/2 ± i(√5)/2

x   =   3/2 + i(√5)/2        ;         x   =   3/2 - i(√5)/2

d)

The equation 3x− 2x − 1  =  0

Separate variables and constants aside by adding 1 to each side.

3x− 2x   =  1

Here x^2 coefficient is 3 , for perfect square make x^2 coefficient 1 by dividing each side by 3

x− 2x  =  1/3

To change the expression into a perfect square trinomial add (half the x coefficient)² to each side of the expression.

x− (2x)/3 + (1/3)^2   =  1/3 + (1/3)^2

(x - 1/3)^2   =  1/3 + 1/9

(x - 1/3)^2   =  (3 + 1)/9

(x - 1/3)^2  =  4/9

Take square root on both sides.

(x - 1/3)   =   ± √(4/9)

(x - 1/3)   =   ± 2/3

x   =   1/3 ± 2/3

x   =   1/3 + 2/3         ;          x   =   1/3 - 2/3

x  =  1                       ;          x  =  -1/3

Answer :

a)  Solutions are x = 3  + 2√2 and x = 3  - 2√2

b)  Solutions are x   =   3/2 + i(√5)/2 and  x   =   3/2 - i(√5)/2

c)  Solutions are x   = 1  and  x = - 1/3.

 
answered Oct 18, 2018 by homeworkhelp Mentor
edited Oct 18, 2018 by bradely

Related questions

...