Welcome :: Homework Help and Answers :: Mathskey.com
Welcome to Mathskey.com Question & Answers Community. Ask any math/science homework question and receive answers from other members of the community.

13,459 questions

17,854 answers

1,446 comments

807,709 users

Use the quadratic formula to solve each of the following equations.

0 votes
  1. x2+2x=7
  2. x2+2x=7
  3. 3q2+11=5q
  4. 3q2+11=5q
  5. 7t2=6−19t
asked Oct 16, 2018 in ALGEBRA 2 by anonymous

1 Answer

0 votes
1)
x^2 + 2x  =  7
x^2 + 2x  - 7  =  0
Compare it to quadratic form ax^2 + bx + c  =  0
a = 1, b = 2, c = -7
Roots are  
x  =  [ - b ± √(b^2 - 4ac) ] / 2a
x  =  [ - (2) ± √((2)^2 - 4(1)(-7)) ] / 2(1)
x  =  [ - 2 ± √(4 + 28) ] / 2
x  =  [ - 2 ± √32 ] / 2
x  =  [ - 2 ± 4√2 ] / 2
x  =  [ - 2 + 4√2 ] / 2       ;        x  =  [ - 2 - 4√2 ] / 2
x  =  - 2/2 + (4√2)/2       ;        x  =  - 2/2 - (4√2)/2
x  =  - 1 + 2√2       ;        x  =  - 1 - 2√2
2)
3q^2 + 11  =  5q
3q^2 + 11 - 5q  =  0
3q^2 - 5q + 11  =  0
Compare it to quadratic form ax^2 + bx + c  =  0
a = 3, b = -5, c = 11
Roots are  
x  =  [ - b ± √(b^2 - 4ac) ] / 2a
x  =  [ - (-5) ± √((-5)^2 - 4(3)(11)) ] / 2(3)
x  =  [ 5 ± √(25 - 132) ] / 6
x  =  [ 5 ± √(-107) ] / 6
x  =  [ 5 ± i√107 ] / 6
x  =  [ 5 + i√107 ] / 6      ;     x  =  [ 5 - i√107 ] / 6
x  =   5/6 + i(√107)/6      ;     x  =  5/6 - i(√107)/6
3)
7t^2  =  6 - 19t
​7t^2 - 6 + 19t  =  0
​7t^2 + 19t - 6  =  0
Compare it to quadratic form ax^2 + bx + c  =  0
a = 7, b = 19, c = -6
Roots are  
x  =  [ - b ± √(b^2 - 4ac) ] / 2a
x  =  [ - (19) ± √((19)^2 - 4(7)(-6)) ] / 2(7)
x  =  [ - 19 ± √(361 + 168) ] / 14

x  =  [ - 19 ± √529 ] / 14

x  =  [ - 19 ± 23 ] / 14
x  =  [ - 19 + 23 ] / 14      ;          x  =  [ - 19 - 23 ] / 14
x  =  4 / 14                      ;          x  =  -42 / 14
x  =  2 / 7                        ;          x  = - 3
Answer :

1)  The Solutions are x  =  - 1 + 2√2  and   x  =  - 1 - 2√2

2)  The Solutions are  x  =   5/6 + i(√107)/6  and  x  =  5/6 - i(√107)/6

3)  The Solutions are  x  =  2/7  and  x =- 3.

 

answered Oct 18, 2018 by homeworkhelp Mentor
edited Oct 21, 2018 by bradely

Related questions

...